What is radiologic technology?
Radiologic technology involves using medical radiation equipment to create images of bones, organs, and blood vessels as prescribed by physicians to assist in the diagnosis of diseases or injuries.

What is the role of the radiologic technologist?
Working as members of radiology teams, radiologic technologists explain procedures to patients, position them appropriately for x-rays, and produce x-ray images while limiting patient and personal exposure to radiation. They use their knowledge of anatomy and physiology to obtain necessary imaging results.

Where do radiologic technologists work?
While most work in hospitals, there are opportunities for radiologic technologists to work in physicians’ offices, urgent care clinics, diagnostic laboratories, and industry.

Is there a demand for radiologic technologists?
According to the U.S. Department of Labor, there will be steady growth in the field over the next decade as the population ages.

What is the salary range for radiologic technologists?
According to the Health Professions Career and Education Directory, radiographers’ salaries and benefits are competitive with other health professionals and vary according to experience and employment location.

As of 2015, 45 states required licensure as a condition of practice. According to ASRT Wage and Salary Survey of 2013 the national median salary is $62,763. The New York State median salary is $68,351. Radiologic Technologists practicing in computed tomography (CT) and magnetic resonance imaging (MRI) are earning salaries at the top of the salary range.

What else should I know?
After completing Stony Brook’s post-baccalaureate year Radiologic Technology program, students are eligible for the National Registry Examination and prepared for entry-level positions in radiologic technology.

Additional training may lead to qualifications for specialized areas such as CT scanning, angiography, and magnetic resonance imaging. Career paths include positions as supervisors, chief radiologic technologists, and directors of radiologic technology.

-Radiologic Procedures & Positioning I: Examines routine clinical radiographic positioning of the upper and lower extremities, shoulder, spine, chest, pelvis, skull, abdomen, and digestive and urinary systems. Includes portable studies, operating room applications, angiography, and advanced imaging techniques.

-Radiologic Technique: Focuses on production of radiographic images. Includes rationale for selection of technical factors; issues of image resolution and contrast, image receptor technology, film sensitometry, image intensification, film processing, grids, automatic exposure control; portable/surgical procedures; basic contrast agent pharmacology; and administration directly related to the production of radiographic images. Presents an overview of the special modalities of computed radiography (CR), direct radiography (DR), fluoroscopy, digital fluoroscopy, digital subtraction angiography (DSA), computed tomography (CT), and picture archive communication systems (PACS). Special emphasis on reducing patient exposure to radiation.

Modern imaging technologies in the hands of competent professionals have the capacity to improve health outcomes for patients with many types of illnesses and injuries. Earlier diagnosis of disease, ongoing monitoring of treatment protocols, and therapeutic applications in imaging have improved the prognosis for patients in many medical disciplines. The important contributions of imaging to quality health care are increasingly apparent and its place in the health care landscape seems secure.”

- Center for Health Workforce Studies, University at Albany
Students can declare the Health Science major at any time during their academic career. All major courses are taken during the senior year. In order to begin your senior year courses in the major, you must have:

- a G.P.A. of at least 2.0 and have successfully completed 91 credits and have met all D.E.C/S.B.C requirements except TECH SBC requirement which will be satisfied during the senior year
- at least 16 credits in sciences, which must include HAN 200 and HAN 202 sequence, or equivalent sequence (ask advisor for information)
- 21 credits of related electives, which must include HAN 251 and HAN 312
- 10 upper division credits.

Successful completion of the following courses during the fall semester of your senior year is required:

- Health Care Issues
- Professional Ethics
- Communication Skills
- Professional Writing
- Health Informatics

If you are interested in applying to the Radiologic Technology concentration, an additional course must be taken:

- HAN 395: Radiation Physics in Medicine

Tuition will be due two weeks prior to the 1st day of the post-baccalaureate program.

Health Assessment Forms must be submitted one month prior to the start of your program.

The student is responsible for transportation during the post-baccalaureate year.

Clinical sites are located anywhere from Manhattan to eastern Long Island.

Financial Aid does not cover tuition for the post-baccalaureate program. You may take out a career loan from various financial institutions.

Students may incur additional costs (materials, books, drug tests, background checks, etc.) during the post baccalaureate program.

Campus housing may not be available.

$50 application fee

Tuition Costs—$7,200.00
Number of Seats—20