Background

- Alzheimer’s Disease (AD) is a progressive and fatal neurodegenerative disorder affecting 5.8 million people in the United States.
- AD is the most common cause of dementia, accounting for 60-80% of all dementia.
- Almost two-thirds of those affected by AD are women.
- Alzheimer’s Disease (AD) is a progressive and fatal neurodegenerative disorder affecting 5.8 million people in the United States.
- The nature of AD takes a devastating toll on caregivers, who require other augmented and adaptive treatments for individuals who do not respond to traditional aerobic fitness training, and who require other augmented and adaptive interventions.
- Additional research using MRI and other imaging techniques to analyze the effect of aerobic exercise training on the rate of brain atrophy in adults with AD would be useful to further assess this topic.

Methods

- Search Engine: PubMed MESH database
- Time Frame of Interest: 2010-Present
- Search Terms: “Alzheimer’s disease,” “aerobic exercise,” and “therapy.”
- Study Designs Included: Clinical trials, randomized control trials (RCTs), and systematic reviews.
- Study Exclusions: Participants with other neurologic disorders such as non-Alzheimer’s dementia or head trauma.
- Search Results: 45
- Selection and Analysis: 3 articles (references 4, 8, and 10)

PICO

- Do individuals with Alzheimer’s Disease participate in aerobic exercise training exhibit less decline in cognitive function and brain atrophy?

Study Designs

- The articles selected are randomized control trials consisting of community-dwelling participants, aged 50 years and older, with a diagnosis of mild or early Alzheimer’s Disease.
- Each of the studies organized participants into one of two groups: an intervention group or a control group. All intervention groups received approximately one hour of aerobic exercise training three to five times per week.
- The primary outcome measures focused on various aspects of cognition and memory. Secondary outcome measures included caregiver questionnaires, additional cognitive tests, physical tests, and analysis of high-intensity subpopulations from the intervention group.

Summary of Results

- Figure 1: Between group differences in the mean change from baseline to 16-week followup in the study by Hoffmann et al. Suggests the aerobic (aerobic exercise) group was associated with a significant change in peak VO2 (p<0.05), but significant mean change from baseline to high-intensity exercise intervention (adherence >80% and intensity >70%) versus the control group (p<0.05).

- Table 1: Intertreatment differences in aerobic fitness and cognitive responses after 6-month aerobic exercise intervention among treatment groups in the study by Yu et al. The intervention (aerobic exercise) group had a greater standard deviation than the control (stretching) group on all 4 outcome measures.

Conclusions and Future Directions

- The literature surveyed uses a variety of outcome measures to analyze the effect of aerobic exercise training on cognition and brain atrophy in adults with mild or early AD.
- The further analysis of high-intensity exercise subgroups and the relationship of change in cardiorespiratory fitness (peak VO2) with changes observed in outcome measures helps to display fitness-specific effects of aerobic training on cognition.
- The study by Yu et al demonstrated the existence of true interindividual differences in aerobic fitness and cognitive responses to aerobic exercise training in adults with mild AD. These findings emphasize the need to apply a precision exercise approach in future AD exercise studies to account for individuals who do not respond to traditional aerobic fitness training, and who require other augmented and adaptive interventions.

Acknowledgements

- Special thanks to my mentor, Dr. Warren, for guidance and feedback throughout this process.
- Thank you to Professor Thaller for organization of Masters Project resources.
- Thank you to Stony Brook University Libraries for EndNote training and research guidance.

References

1. Alzheimer’s Disease and Dementia. (2020). [Online]. Available at: <https://www.alz.org/dementia>

Limitations

- Duration of Exercise Program: Recent studies show at least six months of exercise training is necessary to induce cognitive changes.
- Sample Size and Demographics: The studies by Morris et al. and Yu et al. had sample sizes of less than 100 participants, which is difficult to generalize to larger populations and detect significant group effects. Additionally, the study by Yu et al. lacked diversity in the study sample, as most participants were Caucasian and had achieved a high-level of education.
- Degree of Supervision during Exercise Program: The studies by Hoffmann and Yu et al. included supervised exercise sessions across the duration of the study to ensure consistency in the execution of exercises. The participants in the study by Morris et al. were only supervised for six of the twenty-six week exercise training program, which could introduce variability in exercise execution, therefore affecting the outcome measures.